Reducing false alarms in the ICU by quantifying self-similarity of multimodal biosignals.

نویسندگان

  • Christoph Hoog Antink
  • Steffen Leonhardt
  • Marian Walter
چکیده

False arrhythmia alarms pose a major threat to the quality of care in today's ICU. Thus, the PhysioNet/Computing in Cardiology Challenge 2015 aimed at reducing false alarms by exploiting multimodal cardiac signals recorded by a patient monitor. False alarms for asystole, extreme bradycardia, extreme tachycardia, ventricular flutter/fibrillation as well as ventricular tachycardia were to be reduced using two electrocardiogram channels, up to two cardiac signals of mechanical origin as well as a respiratory signal. In this paper, an approach combining multimodal rhythmicity estimation and machine learning is presented. Using standard short-time autocorrelation and robust beat-to-beat interval estimation, the signal's self-similarity is analyzed. In particular, beat intervals as well as quality measures are derived which are further quantified using basic mathematical operations (min, mean, max, etc). Moreover, methods from the realm of image processing, 2D Fourier transformation combined with principal component analysis, are employed for dimensionality reduction. Several machine learning approaches are evaluated including linear discriminant analysis and random forest. Using an alarm-independent reduction strategy, an overall false alarm reduction with a score of 65.52 in terms of the real-time scoring system of the challenge is achieved on a hidden dataset. Employing an alarm-specific strategy, an overall real-time score of 78.20 at a true positive rate of 95% and a true negative rate of 78% is achieved. While the results for some categories still need improvement, false alarms for extreme tachycardia are suppressed with 100% sensitivity and specificity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing false alarms in the ICU by quantifying self-similarity of multimodal biosignals

False arrhythmia alarms pose a major threat to the quality of care in today’s ICU. Thus, the PhysioNet/Computing in Cardiology Challenge 2015 aimed at reducing false alarms by exploiting multimodal cardiac signals recorded by a patient monitor. False alarms for asystole, extreme bradycardia, extreme tachycardia, ventricular flutter/fibrillation as well as ventricular tachycardia were to be redu...

متن کامل

Probabilistic Patient Monitoring using Extreme Value Theory - A Multivariate, Multimodal Methodology for Detecting Patient Deterioration

Conventional patient monitoring is performed by generating alarms when vital signs exceed pre-determined thresholds, but the false-alarm rate of such monitors in hospitals is so high that alarms are typically ignored. We propose a principled, probabilistic method for combining vital signs into a multivariate model of patient state, using extreme value theory (EVT) to generate robust alarms if a...

متن کامل

Transition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document

  Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...

متن کامل

Clinical Alarms in Intensive Care Units: Perceived Obstacles of Alarm Management and Alarm Fatigue in Nurses.

OBJECTIVES The purpose of this descriptive study was to investigate the current situation of clinical alarms in intensive care unit (ICU), nurses' recognition of and fatigue in relation to clinical alarms, and obstacles in alarm management. METHODS Subjects were ICU nurses and devices from 48 critically ill patient cases. Data were collected through direct observation of alarm occurrence and ...

متن کامل

Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform

BACKGROUND Over the past two decades, high false alarm (FA) rates have remained an important yet unresolved concern in the Intensive Care Unit (ICU). High FA rates lead to desensitization of the attending staff to such warnings, with associated slowing in response times and detrimental decreases in the quality of care for the patient. False arrhythmia alarms are commonly due to single channel E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 37 8  شماره 

صفحات  -

تاریخ انتشار 2016